


## Rectangles - Same Area & Different Perimeter

Name: \_\_\_\_\_

Solve each problem.

1) The rectangle below has the dimensions  $3 \times 6$ . Create a rectangle with the same area, but a different perimeter.

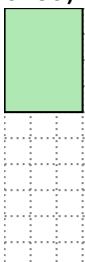


### Answers

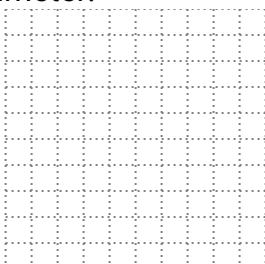
1. \_\_\_\_\_

2. \_\_\_\_\_

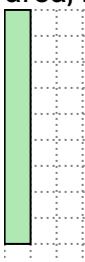
3. \_\_\_\_\_


4. \_\_\_\_\_

5. \_\_\_\_\_


2) The rectangle below has the dimensions  $2 \times 10$ . Create a rectangle with the same area, but a different perimeter.




3) The rectangle below has the dimensions  $3 \times 4$ . Create a rectangle with the same area, but a different perimeter.




4) The rectangle below has the dimensions  $2 \times 8$ . Create a rectangle with the same area, but a different perimeter.



5) The rectangle below has the dimensions  $1 \times 9$ . Create a rectangle with the same area, but a different perimeter.

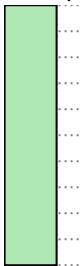




## Rectangles - Same Area & Different Perimeter

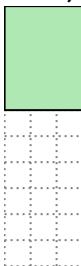
Name:

**Answer Key**


Solve each problem.

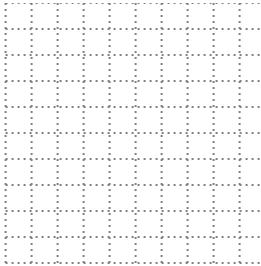
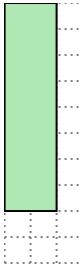
1) The rectangle below has the dimensions  $3 \times 6$ . Create a rectangle with the same area, but a different perimeter.




$2 \times 9$

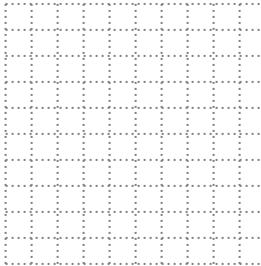
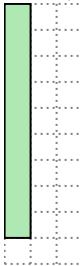
2) The rectangle below has the dimensions  $2 \times 10$ . Create a rectangle with the same area, but a different perimeter.





$4 \times 5$

3) The rectangle below has the dimensions  $3 \times 4$ . Create a rectangle with the same area, but a different perimeter.





$2 \times 6$

4) The rectangle below has the dimensions  $2 \times 8$ . Create a rectangle with the same area, but a different perimeter.



$4 \times 4$

5) The rectangle below has the dimensions  $1 \times 9$ . Create a rectangle with the same area, but a different perimeter.



$3 \times 3$

**Answers**

1.  $2 \times 9$

2.  $4 \times 5$

3.  $2 \times 6$

4.  $4 \times 4$

5.  $3 \times 3$