
Rotate each shape. Answer as the new coordinates.

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

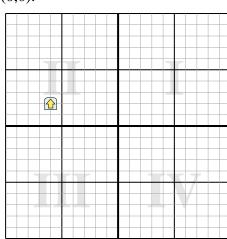
1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

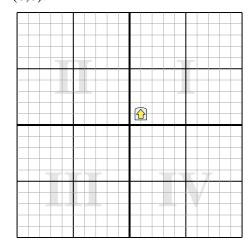
 $y1 = 1 \times 0.87 + 4 \times 0.5$

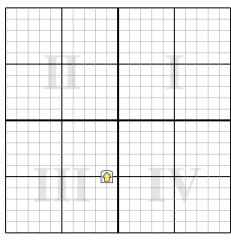
3.
$$x1 = 0.5 - 3.48$$

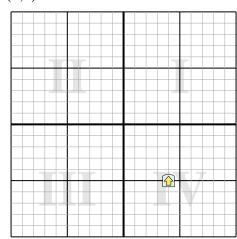

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

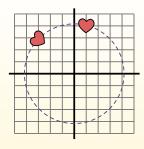
 $y1 = 2.87$


5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).


Rotate the shape 203° around the point (0,0).


Rotate the shape -120° around the point (0,0).

Rotate the shape 183° around the point (0,0).

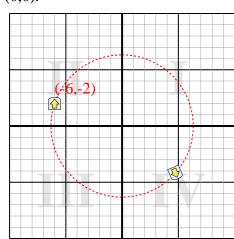

Rotate the shape -35° around the point (0,0).

Rotation Formula

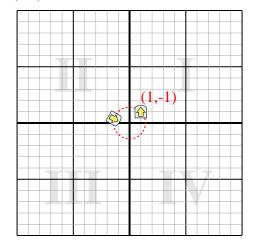
$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

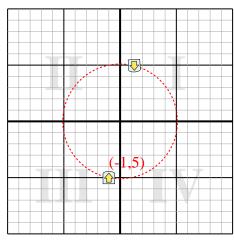
1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

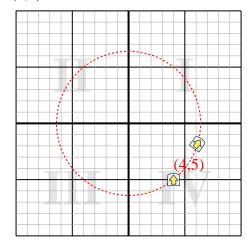

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).


Answers

- _{1.} (4.7,-4.2)
- 2. **(-1.4,0.4)**
- 3. **(1.3,4.9)**
- 4. **(6.1,-1.8)**


1) Rotate the shape 203° around the point (0,0).


2) Rotate the shape -120° around the point (0,0).

3) Rotate the shape 183° around the point (0,0).

4) Rotate the shape -35° around the point (0,0).

