θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

1. _____

2.

3. _____

4. _____

1) Rotate the shape 231° around the point (0,0).

2) Rotate the shape -205° around the point (0,0).

3) Rotate the shape -134° around the point (0,0).

4) Rotate the shape -224° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

- 2. $x1 = 1 \times 0.5 - 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- (-6.6, -1.4)

- (5.7, -0.1)

Rotate the shape 231° around the point (0,0).

Rotate the shape -205° around the point (0,0).

Rotate the shape -134° around the point (0,0).

Rotate the shape -224° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4. $x1 = -2.98$

4. _____

Answers

1) Rotate the shape 76° around the point (0,0).

2) Rotate the shape 192° around the point (0,0).

3) Rotate the shape 290° around the point (0,0).

4) Rotate the shape -62° around the point (0,0).

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- 1. **(2.7,-6.6)**
- 2. **(-1.8,-3.7)**
- (-1.3,-0.6)
- 4. **(1.2,-4.1)**

1) Rotate the shape 76° around the point (0,0).

2) Rotate the shape 192° around the point (0,0).

3) Rotate the shape 290° around the point (0,0).

Rotate the shape -62° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Rotate the shape -230° around the point (0,0).

Rotate the shape 149° around the point (0,0).

Rotate the shape -184° around the point (0,0).

4) Rotate the shape 216° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

1) Rotate the shape -230° around the point (0,0).

2) Rotate the shape 149° around the point (0,0).

3) Rotate the shape -184° around the point (0,0).

4) Rotate the shape 216° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Rotate the shape 203° around the point (0,0).

Rotate the shape -120° around the point (0,0).

Rotate the shape 183° around the point (0,0).

Rotate the shape -35° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- 1. **(4.7,-4.2)**
- 2. **(-1.4,0.4)**
- 3. **(1.3,4.9)**
- 4. **(6.1,-1.8)**

1) Rotate the shape 203° around the point (0,0).

2) Rotate the shape -120° around the point (0,0).

3) Rotate the shape 183° around the point (0,0).

4) Rotate the shape -35° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

1. _____

2.

3. _____

4. _____

1) Rotate the shape -154° around the point (0,0).

2) Rotate the shape 182° around the point (0,0).

3) Rotate the shape 204° around the point (0,0).

Rotate the shape -127° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- _{1.} (4.9,-1.3)
- 2. **(-6.9,4.2)**
- 3. **(-5.2,5.6)**
- 4. **(-4.4,-0.8)**

1) Rotate the shape -154° around the point (0,0).

2) Rotate the shape 182° around the point (0,0).

3) Rotate the shape 204° around the point (0,0).

4) Rotate the shape -127° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

1. _____

2

3. _____

4. _____

1) Rotate the shape 99° around the point (0,0).

2) Rotate the shape -40° around the point (0,0).

3) Rotate the shape -292° around the point (0,0).

4) Rotate the shape 45° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

- 1. $x1 = 1 \times \cos(60) 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2. $x1 = 1 \times 0.5 - 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- (6.3, -5)

Rotate the shape 99° around the point (0,0).

Rotate the shape -40° around the point (0,0).

Rotate the shape -292° around the point (0,0).

Rotate the shape 45° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

1. _____

2.

3. _____

4. _____

1) Rotate the shape -53° around the point (0,0).

2) Rotate the shape 235° around the point (0,0).

3) Rotate the shape 37° around the point (0,0).

4) Rotate the shape -129° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

- 1. $x1 = 1 \times \cos(60) 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2. $x1 = 1 \times 0.5 - 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

Rotate the shape -53° around the point (0,0).

Rotate the shape 235° around the point (0,0).

Rotate the shape 37° around the point (0,0).

4) Rotate the shape -129° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

Rotate the shape -91° around the point (0,0).

2) Rotate the shape -189° around the point (0,0).

Rotate the shape -140° around the point (0,0).

Rotate the shape 202° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

 $y1 = 0.87 + 2$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

Rotate the shape -91° around the point (0,0).

Rotate the shape -189° around the point (0,0).

Rotate the shape -140° around the point (0,0).

Rotate the shape 202° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Rotate the shape 91° around the point (0,0).

2) Rotate the shape -105° around the point (0,0).

Rotate the shape 248° around the point (0,0).

Rotate the shape 140° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

- 1. $x1 = 1 \times \cos(60) 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2. $x1 = 1 \times 0.5 - 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- (7.1,3.9)

- (5,0.3)

Rotate the shape 91° around the point (0,0).

Rotate the shape -105° around the point (0,0).

Rotate the shape 248° around the point (0,0).

Rotate the shape 140° around the point (0,0).

 θ = Angle of Rotation

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$

$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2.
$$x1 = 1 \times 0.5 - 4 \times 0.87$$

 $y1 = 1 \times 0.87 + 4 \times 0.5$

3.
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

4.
$$x1 = -2.98$$

 $y1 = 2.87$

1. _____

2

3. _____

4. _____

1) Rotate the shape 255° around the point (0,0).

2) Rotate the shape 95° around the point (0,0).

3) Rotate the shape -55° around the point (0,0).

4) Rotate the shape -34° around the point (0,0).

Rotation Formula

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

1. $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ $y1 = 1 \times \sin(60) + 4 \times \cos(60)$

Name:

- 2. $x1 = 1 \times 0.5 4 \times 0.87$ $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

Answers

- 1. **(2.6,1.7)**
- ₂ (6.5,-6.6)
- (-**6.3,3.2**)
- 4. **(1.3,6.9)**

1) Rotate the shape 255° around the point (0,0).

2) Rotate the shape 95° around the point (0,0).

3) Rotate the shape -55° around the point (0,0).

Rotate the shape -34° around the point (0,0).

