## Solve each problem. - A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool? - A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug? - Maria spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery? - 4) A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter? - A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn? - A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely? - 7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students? - Debby was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl? - A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup? - A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug? ## Answers - 1. \_\_\_\_\_ - 2 - 3. - 4. \_\_\_\_\_ - 5. \_\_\_\_\_ - 6. \_\_\_\_\_ - 7. \_\_\_\_\_ - 8. \_\_\_\_\_ - 9. \_\_\_\_\_ - 10. \_\_\_\_ ## Solve each problem. - A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool? - A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug? - Maria spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery? - 4) A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter? - A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn? - A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely? - 7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students? - 8) Debby was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl? - A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup? - A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug? | A | n | S | w | e | r | S | |------------------------|----|---|----|---|---|---| | $\boldsymbol{\Lambda}$ | 11 | 3 | ** | · | 1 | 3 | - Answers - $1\frac{1}{2}$ hours - $_2$ . $1\frac{1}{2}$ bags - $1\frac{1}{2}$ hours - $_{4.}$ $1\frac{1}{2}$ minutes - 5. **3 bags** - 6. **3 containers** - $\frac{3 \text{ bags}}{}$ - 8. 3 containers - 9. **3 baskets** - 10 3 bottles