

## Solve each problem.

- A water hose had filled up  $\frac{1}{3}$  of a pool after  $\frac{1}{2}$  of an hour. At this rate, how many hours would it take to fill the pool?
- A dejuicer was able to squeeze a pint of juice from  $\frac{1}{2}$  bag of oranges. This amount of juice filled up  $\frac{1}{3}$  of a jug. At this rate, how many bags will it take to fill the entire jug?
- Maria spent  $\frac{1}{2}$  of an hour playing on her phone. That used up  $\frac{1}{3}$  of her battery. How long would she have to play on her phone to use the entire battery?
- 4) A snail going full speed was taking  $\frac{1}{2}$  of a minute to move  $\frac{1}{3}$  of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- A bag of grass seeds weighed  $\frac{1}{2}$  of a kilogram. That was enough to cover  $\frac{1}{3}$  of a front lawn with seed. How many bags would it take to completely cover a lawn?
- A container of gasoline that held  $\frac{1}{2}$  of a liter could fill up  $\frac{1}{3}$  of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 7) A bag of chocolate mix that weighed  $\frac{1}{2}$  of a kilogram could make enough brownies to feed  $\frac{1}{3}$  of the students at school. How many bags would be needed to feed all of the students?
- Debby was using a container to fill up a fishbowl. The container held  $\frac{1}{2}$  of a gallon of water and filled  $\frac{1}{3}$  of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
- A basket of lemons weighed  $\frac{1}{2}$  of a pound and could make a cup of lemonaide that was  $\frac{1}{3}$  full. How many baskets of lemons would you need to fill up the entire cup?
- A discount bottle of perfume was  $\frac{1}{2}$  of a liter. That was enough to fill  $\frac{1}{3}$  of a jug. How many bottles of perfume would you need to fill the entire jug?

## Answers

- 1. \_\_\_\_\_
- 2
- 3.
- 4. \_\_\_\_\_
- 5. \_\_\_\_\_
- 6. \_\_\_\_\_
- 7. \_\_\_\_\_
- 8. \_\_\_\_\_
- 9. \_\_\_\_\_
- 10. \_\_\_\_



## Solve each problem.

- A water hose had filled up  $\frac{1}{3}$  of a pool after  $\frac{1}{2}$  of an hour. At this rate, how many hours would it take to fill the pool?
- A dejuicer was able to squeeze a pint of juice from  $\frac{1}{2}$  bag of oranges. This amount of juice filled up  $\frac{1}{3}$  of a jug. At this rate, how many bags will it take to fill the entire jug?
- Maria spent  $\frac{1}{2}$  of an hour playing on her phone. That used up  $\frac{1}{3}$  of her battery. How long would she have to play on her phone to use the entire battery?
- 4) A snail going full speed was taking  $\frac{1}{2}$  of a minute to move  $\frac{1}{3}$  of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- A bag of grass seeds weighed  $\frac{1}{2}$  of a kilogram. That was enough to cover  $\frac{1}{3}$  of a front lawn with seed. How many bags would it take to completely cover a lawn?
- A container of gasoline that held  $\frac{1}{2}$  of a liter could fill up  $\frac{1}{3}$  of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 7) A bag of chocolate mix that weighed  $\frac{1}{2}$  of a kilogram could make enough brownies to feed  $\frac{1}{3}$  of the students at school. How many bags would be needed to feed all of the students?
- 8) Debby was using a container to fill up a fishbowl. The container held  $\frac{1}{2}$  of a gallon of water and filled  $\frac{1}{3}$  of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
- A basket of lemons weighed  $\frac{1}{2}$  of a pound and could make a cup of lemonaide that was  $\frac{1}{3}$  full. How many baskets of lemons would you need to fill up the entire cup?
- A discount bottle of perfume was  $\frac{1}{2}$  of a liter. That was enough to fill  $\frac{1}{3}$  of a jug. How many bottles of perfume would you need to fill the entire jug?

| A                      | n  | S | w  | e | r | S |
|------------------------|----|---|----|---|---|---|
| $\boldsymbol{\Lambda}$ | 11 | 3 | ** | · | 1 | 3 |

- Answers
- $1\frac{1}{2}$  hours
- $_2$ .  $1\frac{1}{2}$  bags
- $1\frac{1}{2}$  hours
- $_{4.}$   $1\frac{1}{2}$  minutes
- 5. **3 bags**
- 6. **3 containers**
- $\frac{3 \text{ bags}}{}$
- 8. 3 containers
- 9. **3 baskets**
- 10 3 bottles