	Understanding Unit Rate Name:	
Solv	e each problem.	Answers
1)	A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?	1
2)	A chef used $\frac{1}{2}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?	2 3
3)	A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?	4 5
4)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	6 7
5)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?	8 9
6)	A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?	10
7)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?	
8)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?	
9)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?	
10)	Haley spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?	
	Math www.CommonCoreSheets.com 7	70 60 50 40 30 20 10 0

	Understanding Unit Rate Name:	Answer Key		
	Solve each problem. <u>Answers</u>			
1)	A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?	1. $1^{1/2}$ seconds		
		2. $1^{1/2}$ bags		
2)	A chef used $\frac{1}{2}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?	3. 3 cans		
		4. $1^{1/2}$ minutes		
3)	A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?	5. $1^{1/2}$ hours		
		6. 3 baskets		
4)	A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?	7. $1^{1/2}$ hours		
		8. 3 potatoes		
5)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?	9. 3 bags		
		10. $1^{1/2}$ hours		
6)	A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that			
	was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?			
7)	A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?			
8)	An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?			
9)	A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough			
	brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?			
10)	Haley spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?			
		ļ		

Math